Smithsonian Science Education Center
Annual Report
“By making the wonders of science, art, history and culture accessible to all, we help the public understand the complexities of our world and feel part of a shared human experience.”

Lonnie G. Bunch III

These words from Smithsonian Secretary Lonnie G. Bunch III crystallize our mission at the Smithsonian Science Education Center. In a turbulent time of change, it is extraordinary that three key events from the past century—technological advancements, extensive civil uprising, and a global pandemic—are simultaneously recurring in the present day, although not in the exact same way. This moment calls for all of us to act for the greater good, to further education, under standing, empathy, access, and progress.

Here at the Smithsonian Science Education Center, we have established three intertwined goals—innovation, inclusion, and sustainability—that connect and leverage science, culture, history and art to educate and empower future generations.

SSEC was first launched, albeit under a different name, in 1985. What we do—transforming K–12 education through science—has long been understood, but why do we do it? The answers reveal themselves through innovation, inclusion, and sustainability.

Innovation has always been embedded in our programs because the primary purpose of science, technology, engineering, and math (STEM) education is to create critical thinkers, which by extension enables the next generation of innovators. We first need to capture the attention of these future leaders, and we do that in myriad ways, from creating engaging digital games and simulations, such as the Webby Award-winning Pick Your Plate! to completing our Smithsonian Science for the Classroom K–5 Curriculum—this year, we published four new kindergarten modules. This curriculum brings real-world scientific phenomena and engineering problems into the STEM classroom by sparking children’s interest in STEM, as well as history, art, and culture.

In addition, the ongoing pandemic has made us continue to think outside the box, and as a result, we created a host of virtual opportunities for youth and adults alike. For example, through our Girls and Women in STEM initiative, our virtual STEM Master Class on Game Design attracted middle school girls and boys from around the world to learn how to design their own online games and share their creative works.

In these SSEC resources and others, ensuring inclusion is paramount. STEM education is for everyone because a brilliant mind can bud in anyone, regardless of race, culture, gender, sexual orientation, geography, native language, socioeconomic status, or ability. So SSEC is mindfully taking steps to strengthen its message that Diversity, Equity, Accessibility, and Inclusion (DEAI) must be infused throughout its STEM offerings. That begins with teachers, and to that end, our annual STEM Education Summit—held face-to-face since 2017 and virtually for the first time in 2021—continues efforts to support schools, school districts, and state education agencies across the U.S. as they recruit and retain STEM teachers from diverse populations. In addition, to equip K–12 STEM teachers with necessary tools to address the summer skills learning gap for students in underserved regions, our Smithsonian Science Summer School (S4) in partnership with Horizon Greater Washington launched its fourth year by delivering hands-on STEM learning kits @Home to elementary school students and their families, using our Smithsonian Science for the Classroom curriculum, professional development for teachers, and highly immersive virtual Smithsonian museum experiences. Providing all students with meaningful STEM learning experiences is an ongoing priority, and the Zero Barriers in STEM Education program is meeting that challenge, primarily through initiatives geared toward increasing accessible and inclusive STEM practices and programming in schools.

And as we focus on innovation and inclusion actions today, we know that sustainability is key to an equitable and just future. We were incredibly excited to contribute educational content to the aptly named FUTURES exhibit, a 32,000-square-foot future exploration display within the Arts + Industries Building in November. This interactive exhibit is a launching pad for every imagination!

In these SSEC resources and other programs, we recruit and retain STEM teachers from diverse populations. In addition, to equip K–12 STEM teachers with necessary tools to address the summer skills learning gap for students in underserved regions, our Smithsonian Science Summer School (S4) in partnership with Horizon Greater Washington launched its fourth year by delivering hands-on STEM learning kits @Home to elementary school students and their families, using our Smithsonian Science for the Classroom curriculum, professional development for teachers, and highly immersive virtual Smithsonian museum experiences. Providing all students with meaningful STEM learning experiences is an ongoing priority, and the Zero Barriers in STEM Education program is meeting that challenge, primarily through initiatives geared toward increasing accessible and inclusive STEM practices and programming in schools.

And as we focus on innovation and inclusion actions today, we know that sustainability is key to an equitable and just future. We were incredibly excited to contribute educational content to the aptly named FUTURES exhibit, a 32,000-square-foot future exploration display within the Arts + Industries Building in November. This interactive exhibit is a launching pad for every imagination!

Our latest Smithsonian Science for Global Goals community research guides, including Sustainable Communities! How will we help our community thrive? and others centered on vaccines and biodiversity are additional resources to help youth take charge of what goes on in their communities. These guides are based on the United Nations’ Sustainable Development Goals and provide perspectives on various topics that impact our everyday lives.

And because we understand the need for broad collaboration to educate future generations, we launched the Network for Emergent Socio-Scientific Thinking (NESST). This group of youth, educators, scientists, researchers, community leaders, and museum professionals from 11 nations seeks to forge plans that best address significant global socio-scientific issues.

By keeping these three critical goals—innovation, inclusion, and sustainability—at the forefront and supporting STEM K–12 education across the nation and around the world through resources designed to address these goals, we know we will help students everywhere, regardless of their past and present circumstances, to achieve brighter futures. We continue to be extraordinarily grateful for the ongoing generosity of our donors, and we invite you to join us as we venture forward.

Carol L. O’Donnell
Dr. Carol O’Donnell
Director of the Smithsonian Science Education Center
Table of Contents

Letter

INNOVATION
- Pick Your Plate! A Global Guide to Nutrition
 - 1
- Bringing Kindergartners into the Fold
 - 5
- Girls & Women in STEM Initiative
 - 7

INCLUSION
- STEM Education Summit
 - 9
- Smithsonian Science Summer School
 - 11
- Zero Barriers in STEM
 - 13

SUSTAINABILITY
- FUTURES
 - 17
- Sustainable Communities!
 - 19
- NESST: Network for Emergent Socio-Scientific Thinking
 - 23

Other Projects

Thank You to Our Donors

Leadership

Our Board

Finance & Impact

Ways to Give

Credits
We promote authentic, inquiry-based K-12 science, technology, engineering, and math (STEM) teaching and learning.
Eating nutritionally balanced meals is crucial for people to thrive—it helps maintain a healthy weight and heart, promotes strong bones and teeth, and improves memory, mood, and energy levels.

But depending on where you live in the world, people have access to different types of foods, so there are different food groups and daily nutritional guidelines from which to choose. The Smithsonian Science Education Center seeks to boost students’ understanding of nutrition around the world through curriculum and digital assets, including *Pick Your Plate! A Global Guide to Nutrition.* A stellar example of using science, technology, engineering, and math (STEM) elements, *Pick Your Plate!* helps participants make informed decisions to plan nutritious meals.

The Smithsonian Science Education Center, by way of this fun and challenging game, helps children travel virtually to eight countries around the world. In each location, they learn what people eat to meet their daily nutritional needs, gain an understanding of food groups and good nutrition guidelines, discover the importance of serving sizes in nutrition management, and use mathematical and money management skills to calculate the currency needed to maintain a healthy diet.

Pick Your Plate! is embedded in the Smithsonian Science for Global Goals community research guide Food! How do we ensure good nutrition for all? Smithsonian Science for Global Goals guides use the United Nations Sustainable Development Goals (SDGs) as a framework, focusing on sustainable actions that are both defined and implemented by students. One of the SDGs is “Good Health and Well-Being,” which ties directly to proper nutrition.

In 2021, SSEC released a Spanish version of *Pick Your Plate!*, which has been downloaded over 650 times. With so much fun and teaching packed into a single game, it’s no surprise it was nominated for a Webby Award. *Pick Your Plate!* was generously sponsored by Johnson & Johnson.

Since its inception, it has been downloaded from the Apple App Store 108,000 times. In addition, it has been viewed (and likely played) on the Smithsonian Science Education Center’s website more than 55,000 times from people in the United States, Canada, Australia, and Lebanon.

Pick Your Plate! has helped hundreds of thousands of students gain a better understanding of the science behind good nutrition and its positive impacts.
Bringing Kindergartners into the Fold

Because of the pandemic, both the 2019–20 and 2020–21 school years immersed students into extraordinary and difficult learning environments, especially for those in their earliest elementary school years. Fortunately, children are naturally curious, and research shows when immersed in hands-on scientific investigations using high-quality content, they more effectively absorb new information, leading to analysis and revision of their initial ideas, a better understanding of elements in the world around them, and early installation of a love for learning.

So the Smithsonian Science Education Center sought a way to engage the youngest public school students in the three dimensions of learning—learning the disciplines of science and engineering, doing science and engineering, and understanding big ideas of science and engineering—as described in the Next Generation Science Standards (NGSS). Collaborating with leading school science provider Carolina Biological, the Smithsonian Science Education Center launched new Smithsonian Science for the Classroom™ modules designed specifically for kindergartners.

The new modules include What Do Plants and Animals Need to Live?; How Can We Be Ready for the Weather?; How Can We Change an Object’s Motion?; and How Can We Stay Cool in the Sun? The hands-on curriculum draws in young inquisitive minds to approach phenomenon- and problem-driven science learning, connecting them to many aspects of the world around them while sparking their interest in science, technology, engineering, and math (STEM).

The four kindergarten modules cover life science, Earth and space science, physical science, and engineering design, presented in the form of simple, real-life phenomena or problems they can relate to, for example, an outdoor playground surface that is too hot to sit on. In this module, they use simple building materials such as wood craft sticks, paper plates, fabric, and paper clips—honing their fine motor skills—to test two types of sunshades. Through this activity and others, Smithsonian Science for the Classroom™ helps bring experiential object-driven learning—for which the Smithsonian is renowned—to students in classrooms across the nation.

We’re thrilled this now includes kindergartners, thanks to our talented curriculum developers.
Girls & Women in STEM Initiative

It’s no secret that women have had an enormous impact on science, technology, engineering, and math (STEM)—think Sally Ride, Katherine Johnson, Marie Curie, and the list goes on. Yet there are fewer women than men in these fields, so it’s really important to engage girls in STEM when they’re young—and the Smithsonian Science Education Center is determined to do so through several education avenues, including classroom, home, and virtual activities.

We know educators have had to explore fresh ways to connect with students virtually in the midst of a pandemic. Seeking to meet girls (and boys) in an area of natural interest—video games—the Smithsonian Science Education Center held two STEM Master Classes in 2021 to introduce youth to game design, putting them on the other end of these games—their creation!

The Smithsonian Science Education Center staff led two separate summer sessions. These three-day courses welcomed dozens of middle school girls and boys from across the United States and around the world.

The girls and boys who participated didn’t need any coding experience to take this class! Prior to the first virtual meeting, they received pre-course materials to familiarize themselves with the basics of game design using an open-source, visual programming framework that allows users to create interactive stories, games, and animations. During the first day of instruction, participants learned what goes into the systems and design of a digital game. Their creations centered on the scientific phenomenon on recreating a food chain.

Students then began building their individual games, calling on Smithsonian Science Education Center staff and professional mentors from the STEM industry, who answered questions and offered guidance over the next couple of days. To build their communication skills—an important part of the STEM workforce—each student virtually presented their final project to their classmates on the final day of the course.

We need more girls and women in STEM, and the Smithsonian Science Education Center is committed to sparking and cultivating girls’ interest in STEM at an early age.

The STEM Master Class Series is in its second year and was developed with both financial and personnel support from the Smithsonian Regional Council and Johnson & Johnson.
We ensure diversity, equity, accessibility and inclusion (DEAI) in K-12 STEM education
When you were a student, did you see a teacher who looked like you leading your class? If you are a person of color, the answer is likely "no." For example, in North Carolina, where we’re working closely with NC STEM East to increase teacher diversity, over 80% of teachers are white, yet fewer than 50% of students are white. Why is this a concern? Because research shows that when black students are taught by a black teacher in third, fourth, or fifth grade, they are 30% more likely to graduate.

This is true in STEM, too. Research shows that despite having a great interest in STEM, with high confidence and a strong work ethic, many young students of color have less exposure to STEM than their peers. Others graduate with a STEM degree but do not persist in a STEM career. As a result, there is a lack of diversity in the STEM workforce. If we want to include everyone in STEM, then everyone needs to feel included.

This is why since 2017 the Smithsonian Science Education Center has been helping school districts all across the country to attract and retain STEM teachers from underrepresented populations.

At our annual STEM Education Summit, we bring together education teams from across the country, in-person or virtually, to address their districts’ challenges in diversifying the K–12 STEM teaching workforce. To date, 98 teams from 26 states have attended! And it’s not just talk—all participants create a customized action plan on how to address those challenges, and they keep in close contact with mentors to ensure they move toward achieving goals to recruit, retain, and promote STEM teachers from diverse populations.

In 2021, the National Science Foundation recognized the importance of this work by awarding the Smithsonian Science Education Center and Howard University with a grant jointly funded by NSF INCLUDES and DRK-12. Our theory is that by “Building Networks and Enhancing Diversity in the K-12 STEM Teaching Workforce” in the long term, we will help more students see STEM as accessible to them, so they are more likely to choose a STEM degree or career.

Our Howard University colleagues surveyed Historically Black Colleges and Universities (HBCU’s) and other Minority Serving Institutions (MSIs) to better understand what role they play in this work. This led to a virtual workshop that brought together past Summit attendees to reflect on their challenges and successes in action plan implementation. And then we published a source book based on survey findings and lessons learned from the workshop.

The STEM Education Summit has been generously supported by Shell Oil Company since its inception and by the National Science Foundation.

At the Smithsonian Science Education Center, Diversity, Equity, Accessibility, and Inclusion are not just buzz words. They are at the heart of all that we do.
Many students, especially those from low-income families, tend to lose some of the achievement gains made during the previous school year. This “summer slide” is real, and the Smithsonian Science Summer School (S4) was created to address it.

In affiliation with Horizons Greater Washington, a nonprofit summer enrichment program for economically disadvantaged K–12 students attending schools in Washington, DC, the Smithsonian Science Education Center launched the initial program in 2018. The six-week program consists first of hands-on professional development for science teachers, and then classroom instruction that promotes inquiry-based STEM learning, accompanied by a series of highly immersive experiences at local Smithsonian museums, gardens, and research centers. This summer program effectively connects Smithsonian’s magnificent collections of history, art, culture, and science.

When the pandemic set in, “summer slide” was replaced by “COVID slide,” when students were out of school for even longer periods and science learning was often put on the back burner. The importance of the S4 program increased exponentially, and it was quickly adapted to an all-virtual program in 2020, where hands-on kits were shipped to students’ homes, followed by a hybrid program in 2021.

Guided by their teachers in the most recent program, rising fourth graders studied the Smithsonian Science for the Classroom curriculum module “How Can We Provide Energy to People’s Homes?” This culminated with a virtual session led by the National Museum of African-American History and Culture’s (NMAAHC) Chris Williams, who built on the students’ learning through a hands-on activity on electricity using materials delivered to the students’ homes. He then applied their learning to how NMAAHC uses solar power to support the museum’s energy needs.

Meanwhile, rising fifth graders studied “What is Our Evidence We Live on a Changing Earth?” In this curriculum module, students carry out investigations to explain the effect of vegetation on sloped landscapes. Their highly immersive STEM experience at the Smithsonian Environmental Research Center, led by Education Specialist Karen McDonald, explored different varieties of plankton and how they affect erosion.

Having completed its fourth year, the S4 program successfully addresses learning loss by providing students with hands-on experiences and visits to museums, research centers, and cultural centers like those found at the Smithsonian that reignite their passion for learning. We are currently exploring the possibility of introducing similar programs in additional American cities.

We’re grateful to Ofinno for its continued generous support of this program in 2021.
Disparities in academic achievement in STEM for students with disabilities have long been noted. In fact, a recent U.S. Department of Education report found that the pandemic significantly disrupted the education and related aids and services needed for many elementary and secondary students with disabilities, further hampering their academic progress.

To address this problem, the Smithsonian Science Education Center launched an initiative in collaboration with the District of Columbia Public Schools (DCPS), which in addition to being one of the nation’s most diverse districts, serves approximately 8,000 students with disabilities. Teachers were provided with the Smithsonian’s Zero Barriers in STEM Education Accessibility and Inclusion Workbook, which emphasizes Universal Design for Learning (UDL) practices and how to integrate them into K–12 STEM classrooms. These practices help educators shift their focus from seeing a student with disabilities as limited to adjusting curriculum and instruction methods to improve learning experiences. They also ensure that all students, no matter their ability level, use inclusive design practices when engineering solutions to problems.

Through the Zero Barriers in STEM Education program, DCPS teachers were provided with professional learning opportunities, high-quality science content, and Smithsonian Science for the Classroom curriculum materials to strengthen their ability to implement inclusive UDL strategies.

More than 150 printed Zero Barriers workbooks were distributed to DCPS teachers, as well as more than 500 books to New Brunswick Public School District, Los Angeles Unified School District, and other educational organizations with an interest in the Zero Barriers program. Now a free downloadable resource available to all educators, the workbook provides instructional strategies that use digital tools, encourage student choice, and engage multiple sensory functions; reinforces literacy and language skills in STEM; and creates a STEM classroom culture that adopts principles of inclusivity and accessibility.

Barika Bettis, a participating DCPS middle school physical science teacher, liked that the UDL framework treats students as individuals, allowing them to choose their own unit assignments based on their interests and where they feel they can succeed. She also benefited from the Smithsonian Science Education Center’s Zero Barriers professional development, citing that it helped her discover what makes her students learn better. As a result, her students with learning and/or physical challenges are not that far behind the students without disabilities, even after a year of online teaching.

To expand the reach of the Zero Barriers program, the Smithsonian Science Education Center hosted a webinar series in the spring of 2021. The five 90-minutes sessions allowed 88 registrants to hear from STEM experts and advocates about the social impact of accessible STEM programming as well as ways to improve accessible and inclusive K–12 STEM learning in schools and across districts.

Future plans include bringing the Zero Barriers program to 20 new school district leadership teams across the nation to develop their own plan to create accessible STEM classrooms. The Zero Barriers initiative is made possible with generous support from General Motors Company and Smithsonian Accessibility Innovation Funds.
Sustainable Communities!
How will we help our community thrive?

The Network for Emergent Socio-Scientific Thinking (NESST)

FUTURES

We advance STEM education for sustainable development (STEM4SD)
FUTURES

It’s important to learn from our past to ensure a sustainable future. But it’s also crucial to ask big, bold questions that lead us to think about ordinary things in extraordinary ways. The Smithsonian Arts + Industries Building FUTURES exhibit does just that, turning the typical museum experience on its head from the start. Instead of taking a few ideas and exploring them thoroughly, this exhibit offers an incredible array of transformative ideas, and in 2021 the Smithsonian Science Education Center was delighted to contribute to three of them.

The Citizen Science and Park Planner space within the exhibit allows for families, including young visitors, to learn about citizen science, explore science careers, and engage in a hands-on game—Park Planner. This activity encourages visitors to create a more sustainable world by placing 3D-printed, human-made structures (such as a hyperloop slide, kinetic basketball court, pollinator garden, solar array, and water harvester) on a park map without disturbing three animal and plant habitats, making participants think about decisions involved in land development while balancing the needs of both humans and nature.

The exhibit is an outstanding destination for class field trips too, thanks to the Smithsonian Science Education Center’s hand in developing the Teacher Toolkit for Sustainable FUTURES. This standards-aligned, object-centered, and sustainability-focused compilation of eight lessons and activities is designed to help middle school students explore FUTURES’ content and themes in deeper and science-focused ways. And if an in-person visit isn’t possible, the toolkit still allows teachers to share exhibit resources in their classrooms.

FUTURES is an incredible starting point for all of us to consider and embrace our roles in shaping our paths forward.
Sustainable Communities!
How will we help our community thrive?

Involving youth in shaping our collective future isn’t just a courtesy—it’s a necessity. Through a host of Smithsonian Science for Global Goals community research guides, which use the United Nations Sustainable Development Goals as a framework, youth are engaged to help solve the world’s most pressing problems by exploring them from every angle. They discover answers to questions in their own environments, understand the science underlying the question, and then act on newly acquired scientific knowledge.

The Smithsonian Science Education Center, in collaboration with the Inter-Academy Partnership, developed and published three community research guides in 2021, including Sustainable Communities! How will we help our community thrive? Through a curated set of seven parts, youth ages 8–17 answer the question “How will we help our community thrive?” by exploring the underlying science of inclusion, green spaces, urban planning, housing, transportation, and resource use, including renewable resources and minimizing waste. Participants define their personal perspectives in each task while being introduced to other perspectives too, as well as learning from real scientists from around the world.

Dissemination of previous community research guides has demonstrated that when students believe they can impact their lives and communities, there is notable improvement in both knowledge and agency. Initial feedback from field test implementation with pre-service teachers of Sustainable Communities! has been extraordinarily positive. Focus group critique responses fell into four primary themes: groups made up of participants from different backgrounds were better able to accomplish their tasks; tasks built synergy among group members; participants appreciated science as a tool to understand and serve the community; and participants gained a sense of collective achievement.

One teacher commented on how much she appreciated the content and elements of Sustainable Communities! “First, I commend how convenient the guide is to students as they work in their community action research. Second, I like how it is designed more personally to meet each student’s needs to take action in their respective communities. Third, it fosters critical thinking through open-ended questions to draw out meaningful ideas and ways to form a strategic plan advocating a sustainable community.”

We extend deep gratitude to the Gordon and Betty Moore Foundation for their support of the Smithsonian Science for Global Goals project’s research and development, and to Johnson & Johnson for their support in helping us disseminate the community research guides to youth across the globe.
Knowing that many minds must come together to discuss the world's most critical issues as outlined by the United Nations Sustainable Development Goals, the Smithsonian Science Education Center launched the Network for Emergent Socio-Scientific Thinking (NESST) in 2021. The purpose of NESST is to improve K–12 STEM education for sustainable development by recognizing, connecting, and expanding efforts of individuals and organizations that seek to stimulate emergent socio-scientific thinking among students and educators.

A selected Advisory Committee, including K–12 educators, curriculum developers, university students and faculty, educational administrators, scientists, researchers, computer scientists, architects, museum professionals, game developers, and nonprofit and NGO leaders from diverse perspectives and backgrounds, held its first virtual meeting in June. Representing 11 regions across the globe (Argentina, Australia, Bonaire, Canada, Egypt, Indonesia, Nigeria, Mexico, Peru, the United Kingdom, and the United States), this group networks across geographic borders, disciplines, and generations to educate people for the future by taking action on emerging global socio-scientific issues.

The Advisory Committee organized working groups to carry out strategic work in five areas, including: resources and curricular materials; NESST as a professional learning community; scholarship and research; engaging youth; and growing the network. The Advisory Committee is now laying the foundation for the Network that ties together and carries out SSEC’s strategic goal of promoting STEM Education for Sustainable Development.

We are grateful to the Gordon & Betty Moore Foundation for its generous funding of NESST, which continues to develop concrete plans for 2022 and beyond: establishing a Youth Council to incorporate younger voices into the Network; forming a resource hub that will evolve over time; and scheduling both virtual and in-person meetings that will advance the field and expand thought leadership to advance STEM education for sustainable development.

The Smithsonian Science Education Center recognizes NESST as an overarching piece of its infrastructure that further binds together our goals of innovation, inclusion, and sustainability. Intergenerational, cross-sector collaboration is possible. Transforming STEM education is possible. Creating a more sustainable planet is possible. The future is in all of our hands, and we urge you to join us in these efforts by becoming a member of NESST because when we work together, anything is possible!
Other 2021 Projects

Vaccines! How can we use science to help our community make decisions about vaccines?

A freely available community research guide, developed in collaboration with the InterAcademy Partnership as part of the Smithsonian Science for Global Goals project, which helps young people investigate and communicate accurate, helpful, and trusted information about vaccines.

Virtual Action Planning Institute (API)

A virtual convening for educators across the globe to learn about the most relevant topics facing K-12 STEM education today and develop action plans to address these topics locally.

France in Focus

A joint collaboration between the US Embassy in Paris and the Smithsonian Institution to advance French and American students’ and teachers’ understanding of sustainable communities.

Stories of Women of Color in STEM

An eBook for youth that highlights the biographies of trailblazing women who made history through their scientific discoveries and innovation, defied gender and racial stereotypes, and overcame structural barriers to advance the STEM industry.

Smithsonian Science for North Carolina & South Carolina

A five-year grant funded by the U.S. Department of Education, through the Education Innovation and Research (EIR) grant program, which provides hands-on science curriculum materials to 3rd through 5th grade students and professional development to teachers in 37 schools in 7 districts in 2 states and studies the impact.

Smithsonian STEM Literacy Project

A project that provided 10,000 Los Angeles Unified School District (LAUSD) 1st grade students and 2,574 Allentown School District (ASD) 4th and 5th grade students with their own Smithsonian Science Stories printed books to enhance their learning and understanding of science while building their reading skills.
Thank you
From SSEC to our Donors

The Smithsonian Science Education Center thanks all of its donors, volunteers and partners for their generosity and commitment to quality STEM education. It means a great deal to us that so many of you believe in what we do and contribute your treasure, time and talent to help us continue our work. It is because of you that we are able to achieve our mission of transforming K-12 education through science, in collaboration with communities across the globe.

Thank you so much for all that you do for the Smithsonian Science Education Center.

2021 Donors to Smithsonian Science Education Center

Corporations & Foundations
The Aerospace Corporation
Nancy and Michael D. Baudhuin Foundation Fund
Burns & McDonnell Fund
Cedars-Sinai Perot Institute
The Chicago Community Foundation
Colonial Jewish Foundation
Johnson & Johnson Foundation
Richard Lounsbery Foundation
General Motors Company
Gordon and Betty Moore Foundation
Northrop Grumman Corporation
Ofnos
Robert H. and Morice M. Cole Foundation (Mr. and Mrs. Chips Chapmain Page)
PPL Corporation
Rowland Foundation
Shell

Federal Grants
National Science Foundation
US Department of Education

Individuals
Ms. Simone Ache
Mr. Kenneth Altare
Ms. Gloria Armoche
Mr. David August
Mr. Lawrence Auffis
Ms. Phyllis Barman
Mr. Fred Barlett, Jr.
Dr. Terry Bergeson
Ms. Arla Berner
Ms. Joan Boris
Ms. Mary Ellen Binearly
Ms. Fiona Brown
Ms. Kimberly Brown
Ms. Brenda Cachuela
Ms. Calin Charlo
Stephanie Colucci
Ms. Kate Considine
Mr. Gregory Dukler
Mr. Ed Douglass
Ms. Meredith Eby
Ms. Dianne Edginton
Mr. Larry Epstein
Ms. Carol Feinberg and Mr. Kenneth Gilman
Mr. Edward Fize
Mr. William Fink
Mr. Jay Finkstein
Ms. Regan Fitzgerald
Mr. Gary Foss
Ms. Cynthia Foran
Mrs. Lisa Fox
Ms. Barbara Francis
Ms. Gloria Friedman
Cary J. Free
Ms. Kei Frizzell
Mr. Steven Galante
Mr. John Gallagher
Mr. William Ganz
Ms. Lomie Geary
Mr. Chris Giambri
Ms. Monica Gilchrist
Mr. Paul Glorik
Mr. Jonathan Gordon
Ms. Margarita Gorham
Ms. Jennifer Greenfield
Ms. Ruth Greenfield
Mr. Joel Grover
Ms. Melissa Haraana
Mr. Robert Harris
Mr. Daniel Hartwell
Mr. Benjamin Hauser
Ms. Texas Helzol
Mr. Danell Hll
Ms. Erin Kathryn Hogan
Mr. Stephan Hollans
Sara Hooper
Samuel H. Houston, Jr., Ed.D.
Mr. Neville Jacobs
Mr. Adam Jacobm
Mr. Michael James
Mr. Gordon Jee
Mr. Todd Jones
Dr. Gregory Kelly
Ms. Erica Kennedy
Mrs. Brianne Kreitman
Mr. and Mrs. Brianne Kreitman
Mr. and Mrs. Brianne Kreitman
Ms. Frona Brown
Ms. Kimberly Brown
Ms. Brenda Cachuela
Ms. Calin Charlo

2021 Sponsors
Institutional gifts over $100,000+

The Smithsonian Science Education Center receives no federally appropriated funds. We apply for public and private grants, and rely on the support of individuals like you.
Leadership

Secretary Lonnie G. Bunch III
Lonnie G. Bunch III is the 14th Secretary of the Smithsonian. He assumed his position June 16, 2019. As Secretary, he oversees 21 museums, 21 libraries, the National Zoo, numerous research centers, and several education units and centers. Bunch was the founding director of the Smithsonian’s National Museum of African American History and Culture and is the first historian to be Secretary of the Institution.

Dr. Carol O’Donnell
Dr. Carol O’Donnell is the Senior Executive and Director of the Smithsonian Science Education Center (SSEC), an organization of the Smithsonian Institution dedicated to transforming K-12 Education through Science™ in collaboration with communities across the globe.

Our Board

SSEC National Advisory Board

Dr. Frazier Wilson
Chair
Shell Oil Company
Foundation
Director,
Workforce and Community Strategic Initiatives
Shell Oil Company
Houston, Texas

Dr. Monique M. Chism
Monique Chism is the Smithsonian’s Under Secretary for Education. As Under Secretary for Education, Chism is responsible for defining the Institution’s educational priorities. She oversees the Smithsonian’s collective initiatives, communication strategies and funding for programs that benefit learners of all ages.

Dr. Terry Mazany
Vice Chair
Senior Vice President
Community Foundation for Greater Atlanta

Simone Acha
Owner, Simone Acha Consulting

Hina Baloch
Director, Diversity Equity and Inclusion, Sustainability, Data Analytics and STEM Education Communications, General Motors

Greg Dudkin
Executive Vice President and Chief Operating Officer, PPL Corporation

Carol S. Feinberg
Founder, Former President & CEO, We Do, Inc

Derrin Hill
Founder & CEO, RevRoad

Erin K. Hogan
Managing Director, Philanthropic Market Executive, Bank of America

Dr. Samuel H. Houston, Jr.
President & CEO, North Carolina Science, Mathematics, and Technology Education Center

Dr. Gregory Kelly
Distinguished Professor & Senior Associate Dean, Pennsylvania State University

Jeff Martin
Founder and CEO, Tribal Planet, Inc.

Kristin Richardson
Co-Chair of the Alumni, Smithsonian National Board, Community Volunteer

Ana C. Rold
Founder & Publisher, Diplomatic Courier

Meredith G. Stevens
Worldwide Vice President, Supply Chain - Consumer Health & Deliver, Johnson & Johnson Supply Chain

Fredericka Stevenson
Trustee, Stevenson Family Charitable Trust

Edward M. Swallow
Chief Financial Officer & Senior Vice President, Civil Systems Group Aerospace Corporation

Dr. Mark D. Vaughn
Technical Talent Pipelining Manager Lead, Corning Incorporated

Dr. Jennie Ward-Robinson
Co-Director, Center for Studies on Africa & Its Diaspora, Georgia State University

Dr. Douglas Lapp
Founding Director, Emeritus, SSEC

Dr. Samuel H. Houston, Jr.
President & CEO, North Carolina Science, Mathematics, and Technology Education Center

Dr. Gregory Kelly
Distinguished Professor & Senior Associate Dean, Pennsylvania State University

Jeff Martin
Founder and CEO, Tribal Planet, Inc.

Kristin Richardson
Co-Chair of the Alumni, Smithsonian National Board, Community Volunteer

Ana C. Rold
Founder & Publisher, Diplomatic Courier

Meredith G. Stevens
Worldwide Vice President, Supply Chain - Consumer Health & Deliver, Johnson & Johnson Supply Chain

Fredericka Stevenson
Trustee, Stevenson Family Charitable Trust

Edward M. Swallow
Chief Financial Officer & Senior Vice President, Civil Systems Group Aerospace Corporation

Dr. Mark D. Vaughn
Technical Talent Pipelining Manager Lead, Corning Incorporated

Dr. Jennie Ward-Robinson
Co-Director, Center for Studies on Africa & Its Diaspora, Georgia State University

Dr. Douglas Lapp
Founding Director, Emeritus, SSEC
The Smithsonian Science Education Center (SSEC) has reached 5.6 million students, teachers, and educators through our outreach programs this year, showcasing our collaboration with communities across the globe.

Ways to Give!

The Smithsonian Science Education Center receives no federally appropriated funds. We rely on gifts from people like you. Your support helps us pave the way to greater success and impact on a national, and international, scale. Your support has the potential to change hundreds of thousands of lives by nurturing the inner scientist in young people — tomorrow’s innovators and leaders.

To make a gift, visit our website at https://s.si.edu/3GmYMY2

Or, to contribute by mail, please send a personal check made payable to Smithsonian Science Education Center to:

Smithsonian Institution
SSEC
PO Box 418320
Boston, MA 02241-8320

SSEC 2021 Financial Snapshot

- **$2.15M Raised**
 - **Private Philanthropy**: 49%
 - **Corporations**: 16%
 - **Foundations**: 20%
 - **Individuals**: 14%

The Smithsonian is registered as a 501(c)(3) non-profit organization. Contributions to the Smithsonian are tax-deductible to the extent permitted by law.